Welcome to the eth-abi documentation!¶
The eth-abi
library provides low level utilities for converting python
values to and from solidity’s binary ABI format.
For detailed information on ABI types and their encodings, refer to the solidity ABI specification.
Credit¶
Though much of the code has been revised, the eth-abi
library was
originally extracted from the pyethereum
library which was authored by
Vitalik Buterin.
Table of Contents¶
Encoding¶
Encoding Python Values¶
Python values can be encoded into binary values for a given ABI type as follows:
>>> from eth_abi import encode_single, encode_abi
>>> encode_single('uint256', 12345)
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0009'
>>> encode_single('(bytes32,bytes32)', [b'a', b'b'])
b'a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
>>> encode_abi(['bytes32', 'bytes32'], [b'a', b'b'])
b'a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
The encode_single
function can be used to perform any encoding operation
from a python value to a binary ABI value for an ABI type. As is seen in the
example above, encode_single
supports encoding of tuple ABI values which
can be used to encode sequences of python values in a single binary payload.
The encode_abi
function provides an alternate API for encoding tuple
values. It accepts a list of type strings instead of a single tuple type
string. Internally, it uses the encode_single
function to do this.
Because of this redundancy, it will eventually be removed in favor of
encode_single
.
Checking for Encodability¶
It is also possible to check whether or not a certain python value is encodable
for a given ABI type using encode_single
:
>>> from eth_abi import is_encodable
>>> is_encodable('int', 2)
True
>>> is_encodable('int', 'foo')
False
>>> is_encodable('(int,bool)', (0, True))
True
>>> is_encodable('(int,bool)', (0, 0))
False
Non-Standard Packed Mode Encoding¶
Warning
Non-standard packed mode encoding is an experimental feature in the eth-abi library. Use at your own risk and please report any problems at https://github.com/ethereum/eth-abi/issues.
In certain cases, the Solidity programming language uses a non-standard packed encoding. You can encode values in this format like so:
>>> from eth_abi.packed import encode_single_packed, encode_abi_packed
>>> encode_single_packed('uint32', 12345)
b'\x00\x0009'
>>> encode_single_packed('(int8[],uint32)', ([1, 2, 3, 4], 12345))
b'\x01\x02\x03\x04\x00\x0009'
>>> encode_abi_packed(['int8[]', 'uint32'], ([1, 2, 3, 4], 12345))
b'\x01\x02\x03\x04\x00\x0009'
More information about this encoding format is available at https://solidity.readthedocs.io/en/develop/abi-spec.html#non-standard-packed-mode.
Decoding¶
Decoding ABI Values¶
Binary values for a given ABI type can be decoded into python values as follows:
>>> from eth_abi import decode_single, decode_abi
>>> decode_single('uint256', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0009')
12345
>>> decode_single('(bytes1,bytes1)', b'a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')
(b'a', b'b')
>>> decode_abi(['bytes1', 'bytes1'], b'a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')
(b'a', b'b')
The decode_single
function can be used to perform any decoding operation
from a binary ABI value for an ABI type to a python value. As is seen in the
example above, decode_single
supports decoding of tuple ABI values which
can be used to decode a single binary payload into a sequence of python values.
The decode_abi
function provides an alternate API for decoding tuple
values. It accepts a list of type strings instead of a single tuple type
string. Internally, it uses the decode_single
function to do this.
Because of this redundancy, it will eventually be removed in favor of
decode_single
.
Both the decode_single
and decode_abi
functions accept either a
python bytes
or bytearray
value to indicate the binary data to be
decoded.
Registry¶
The eth-abi
library uses a central registry to route encoding/decoding
operations for different ABI types to an appropriate encoder/decoder callable
or class. Using the registry, the coding behavior of any ABI type can be
customized and additional coding behavior for new ABI types can be added.
Adding Simple Types¶
Here’s an example of how you might add support for a simple “null” type using callables:
from eth_abi.exceptions import EncodingError, DecodingError
from eth_abi.registry import registry
# Define and register the coders
NULL_ENCODING = b'\x00' * 32
def encode_null(x):
if x is not None:
raise EncodingError('Unsupported value')
return NULL_ENCODING
def decode_null(stream):
if stream.read(32) != NULL_ENCODING:
raise DecodingError('Not enough data or wrong data')
return None
registry.register('null', encode_null, decode_null)
# Try them out
from eth_abi import encode_single, decode_single
assert encode_single('null', None) == NULL_ENCODING
assert decode_single('null', NULL_ENCODING) is None
encoded_tuple = encode_single('(int,null)', (1, None))
assert encoded_tuple == b'\x00' * 31 + b'\x01' + NULL_ENCODING
assert decode_single('(int,null)', encoded_tuple) == (1, None)
In the above example, we define two coder callables and register them to handle
exact matches against the 'null'
type string. We do this by calling
register
on the registry object.
When a call is made to one of the coding functions (such as
encode_single
or decode_single
), the type string which is
provided (which we’ll call query
) is sent to the registry. This query
will be checked against every registration in the registry. Since we created a
registration for the exact type string 'null'
, coding operations for that
type string will be routed to the encoder and decoder which were provided by
the call to register
. This also works when the registered type string
appears in a compound type as with the tuple type in the example.
Note
As a safety measure, the registry will raise an exception if more than one registration matches a query. Take care to ensure that your custom registrations don’t conflict with existing ones.
Adding More Complex Types¶
Sometimes, it’s convenient to register a single class to handle encodings or
decodings for a range of types. For example, we shouldn’t have to make
separate registrations for the 'uint256'
and 'uint8'
types or for the
'(int,bool)'
and '(int,int)'
types. For cases like this, we can make
registrations for custom subclasses of BaseEncoder
and
BaseDecoder
.
Let’s say we want to modify our “null” type above so that we can specify the number of 32-byte words that the encoded null value will occupy in the data stream. We could do that in the following way:
from eth_abi.decoding import BaseDecoder
from eth_abi.encoding import BaseEncoder
from eth_abi.exceptions import EncodingError, DecodingError
from eth_abi.registry import registry
# Define and register the coders
NULL_ENCODING = b'\x00' * 32
class EncodeNull(BaseEncoder):
word_width = None
@classmethod
def from_type_str(cls, type_str, registry):
word_width = int(type_str[4:])
return cls(word_width=word_width)
def encode(self, value):
self.validate_value(value)
return NULL_ENCODING * self.word_width
def validate_value(self, value):
if value is not None:
raise EncodingError('Unsupported value')
class DecodeNull(BaseDecoder):
word_width = None
@classmethod
def from_type_str(cls, type_str, registry):
word_width = int(type_str[4:])
return cls(word_width=word_width)
def decode(self, stream):
byts = stream.read(32 * self.word_width)
if byts != NULL_ENCODING * self.word_width:
raise DecodingError('Not enough data or wrong data')
return None
registry.register(
lambda x: x.startswith('null'),
EncodeNull,
DecodeNull,
label='null',
)
# Try them out
from eth_abi import encode_single, decode_single
assert encode_single('null2', None) == NULL_ENCODING * 2
assert decode_single('null2', NULL_ENCODING * 2) is None
encoded_tuple = encode_single('(int,null2)', (1, None))
assert encoded_tuple == b'\x00' * 31 + b'\x01' + NULL_ENCODING * 2
assert decode_single('(int,null2)', encoded_tuple) == (1, None)
There are a few differences here from our first example. Now, we are providing
a type string matcher function instead of a literal type string with our call
to register
. Also, we are not using simple callables for our coding
functions. We have created two custom coder classes which inherit from
BaseEncoder
and BaseDecoder
respectively. Additionally, we have
given a label to this registration in case we want to easily delete the
registration later.
The matcher function lambda x: x.startswith('null')
accepts a query type
string and returns True
or False
to indicate if the query should be
matched with our registration. If a query is uniquely matched with our
registration in this way, the registry then calls from_type_str
on our
EncodeNull
or DecodeNull
class to obtain an appropriate instance of the
class based on any additional information contained in the type string. In
this example, that additional information is the number that appears at the end
of the type string (e.g. '2'
in 'null2'
). Through this process, the
registry can determine an encoder or decoder for any type string of the form
'null<M>'
.
There are a few more details here that are worth explaining.
Both of our coder subclasses have some similar aspects. They both have a class
property word_width
. They also have the same implementation for the
from_type_str
method. The BaseEncoder
and BaseDecoder
classes both inherit from BaseCoder
which causes any keyword arguments
passed to __init__
to be used to set the value of properties on an instance
if a class property with the same name is found. This is why our
implementations of from_type_str
instantiate our coder classes with the
keyword argument word_width
. Using this pattern, coder classes can
describe what “settings” they support while providing an easy way to assign
values to those settings. Both of our coder classes use the same settings.
The settings are initialized from the type string in the same way. Therefore,
they have the same implementation for from_type_str
. For clarity, the
same word_width
property and from_type_str
implementation appear in
both classes but they could also have been extracted out into a mixin class.
Our coder classes also implement the BaseEncoder.encode
and
BaseDecoder.decode
methods. These methods work in the same way as the
simple callable coders in our first example except that they have access to the
settings which were extracted from the type string when the class was
instantiated via the from_type_str
method by the registry. This allows
them to handle null values of an arbitrary width in the data stream. As with
the callable coders, the BaseEncoder.encode
and
BaseDecoder.decode
implementations are polite and raise an appropriate
exception when anything goes wrong. EncodeNull
does this via an
implementation of BaseEncoder.validate_value
. For encoder classes, it
is necessary to implement this method since it is used by the
is_encodable
function to determine if a value is encodable without doing
the extra work of encoding it. For certain data types, this can be more
efficient than simply attempting to encode a value.
Codecs¶
Though the default registry can be customized by making additonal coder
registrations or by unregistering existing coders (see Registry),
sometimes a user might wish to create their own registry entirely. In that
case, they can still use the usual API for encoding and decoding values (see
Encoding and Decoding) with their own registry by using the
ABICodec
or ABIEncoder
class.
Using a Custom Registry¶
Here’s an example of how you might add support for a simple “null” type using a custom registry while continuining to use the porcelain encoding and decoding API:
from eth_abi.codec import ABICodec
from eth_abi.exceptions import EncodingError, DecodingError
from eth_abi.registry import ABIRegistry
# Define and register the coders
NULL_ENCODING = b'\x00' * 32
def encode_null(x):
if x is not None:
raise EncodingError('Unsupported value')
return NULL_ENCODING
def decode_null(stream):
if stream.read(32) != NULL_ENCODING:
raise DecodingError('Not enough data or wrong data')
return None
registry = ABIRegistry()
registry.register('null', encode_null, decode_null)
# Try them out
codec = ABICodec(registry)
assert codec.encode_single('null', None) == NULL_ENCODING
assert codec.decode_single('null', NULL_ENCODING) is None
In the above example, we define two coder callables and register them to handle
exact matches against the 'null'
type string in a custom registry. For
more information about coder registrations, see
Adding Simple Types.
We then create a custom codec object with our custom registry and use this to encode and decode byte sequences. This allows us to continue using the porcelain API (described in the Encoding and Decoding sections) with our custom registry.
Copying an Existing Registry¶
Sometimes, it’s more convenient to use an existing registry but with only one or two small modifications. This can be done via a registry’s copying or cloning capability coupled with the use of a custom codec:
from eth_abi.codec import ABICodec
from eth_abi.registry import registry as default_registry
registry = default_registry.copy()
registry.unregister('address')
codec = ABICodec(registry)
try:
codec.encode_single('address', None)
except ValueError:
pass
else:
# We shouldn't reach this since the above code will cause an exception
raise Exception('unreachable')
default_codec = ABICodec(default_registry)
# The default registry is unaffected since a copy was made
assert (
default_codec.encode_single('address', '0x' + 'ff' * 20) ==
b'\x00' * 12 + b'\xff' * 20
)
Using a Custom Stream Class¶
If a user wishes to customize the behavior of the internal stream class used for decoding, they can do the following:
from eth_abi.codec import ABIEncoder, ABIDecoder
from eth_abi.registry import registry
class MyStream:
# Custom behavior...
pass
class MyDecoder(ABIDecoder):
stream_class = MyStream
class MyCodec(ABIEncoder, MyDecoder):
pass
codec = MyCodec(registry)
Nested Dynamic Arrays¶
The eth-abi
library supports the Solidity ABIv2 encoding format for nested
dynamic arrays. This means that values for data types such as the following
are legal and encodable/decodable: int[][]
, string[]
, string[2]
,
etc.
Warning
Though Solidity’s ABIv2 has mostly been finalized, the specification is technically still in development and may change.
Grammar¶
The eth-abi
library exposes its type string parsing and normalization
facilities as part of its public API.
Parsing a Type String¶
Here are some examples of how you might parse a type string into a simple AST and do various operations with the results:
>>> from eth_abi.grammar import ABIType, BasicType, TupleType, parse
>>> tuple_type = parse('(int256,bytes,ufixed128x18,bool[])[2]')
>>> # Checking if a type is a tuple or a basic type
>>> isinstance(tuple_type, ABIType)
True
>>> isinstance(tuple_type, TupleType)
True
>>> [isinstance(i, ABIType) for i in tuple_type.components]
[True, True, True, True]
>>> [isinstance(i, BasicType) for i in tuple_type.components]
[True, True, True, True]
>>> int_type, bytes_type, ufixed_type, bool_type = tuple_type.components
>>> # Inspecting parts of types
>>> len(tuple_type.components)
4
>>> tuple_type.arrlist
((2,),)
>>> int_type.base, int_type.sub, int_type.arrlist
('int', 256, None)
>>> bytes_type.base, bytes_type.sub, bytes_type.arrlist
('bytes', None, None)
>>> ufixed_type.base, ufixed_type.sub, ufixed_type.arrlist
('ufixed', (128, 18), None)
>>> bool_type.base, bool_type.sub, bool_type.arrlist
('bool', None, ((),))
>>> # Checking for arrays or dynamicism
>>> tuple_type.is_array, tuple_type.is_dynamic
(True, True)
>>> int_type.is_array, int_type.is_dynamic
(False, False)
>>> bytes_type.is_array, bytes_type.is_dynamic
(False, True)
>>> ufixed_type.is_array, ufixed_type.is_dynamic
(False, False)
>>> bool_type.is_array, bool_type.is_dynamic
(True, True)
Checking Types for Validity¶
Types can be checked for validity. For example, uint9
is not a valid type
because the bit-width of int
types must be a multiple of 8
:
>>> from eth_abi.grammar import parse
>>> basic_type = parse('uint9')
>>> # The basic type is not valid because the int type's bit-width is not valid
>>> basic_type.validate()
Traceback (most recent call last):
...
eth_abi.exceptions.ABITypeError: For 'uint9' type at column 1 in 'uint9': integer size must be multiple of 8
>>> tuple_type = parse('(bool,uint9)')
>>> # The tuple type is not valid because it contains an int type with an invalid bit-width
>>> tuple_type.validate()
Traceback (most recent call last):
...
eth_abi.exceptions.ABITypeError: For 'uint9' type at column 7 in '(bool,uint9)': integer size must be multiple of 8
Normalizing Type Strings¶
Type strings can be normalized to their canonical form. This amounts to
converting type aliases like uint
to uint256
and so forth:
>>> from eth_abi.grammar import normalize
>>> normalize('uint')
'uint256'
>>> normalize('(uint,(ufixed,function))')
'(uint256,(ufixed128x18,bytes24))'
Internally, eth-abi
will only normalize type strings just before creating
coders for a type. This is done automatically such that type strings passed to
eth-abi
do not need to be normalized before hand.
Tools¶
The eth_abi.tools
module provides extra resources to users of eth-abi
that are not required for typical use. It can be installed with pip
as an
extra requirement:
pip install eth-abi[tools]
ABI Type Strategies¶
The tools
module provides the get_abi_strategy()
function. This function returns a hypothesis strategy (value generator) for any
given ABI type specified by its canonical string representation:
>>> from eth_abi.tools import get_abi_strategy
>>> uint_st = get_abi_strategy('uint8')
>>> uint_st
integers(min_value=0, max_value=255)
>>> uint_list_st = get_abi_strategy('uint8[2]')
>>> uint_list_st
lists(elements=integers(min_value=0, max_value=255), min_size=2, max_size=2)
>>> fixed_st = get_abi_strategy('fixed8x1')
>>> fixed_st
decimals(min_value=-128, max_value=127, places=0).map(scale_by_Eneg1)
>>> tuple_st = get_abi_strategy('(bool,string)')
>>> tuple_st
tuples(booleans(), text())
Hypothesis strategies can be used to conduct property testing on contract code. For more information on property testing, visit the Hypothesis homepage or the Hypothesis readthedocs site.
API¶
eth_abi.abi module¶
eth_abi.base module¶
-
class
eth_abi.base.
BaseCoder
(**kwargs)¶ Bases:
object
Base class for all encoder and decoder classes.
-
classmethod
from_type_str
(type_str: str, registry) → eth_abi.base.BaseCoder¶ Used by
ABIRegistry
to get an appropriate encoder or decoder instance for the given type string and type registry.
-
classmethod
eth_abi.codec module¶
-
class
eth_abi.codec.
ABICodec
(registry: eth_abi.registry.ABIRegistry)¶
-
class
eth_abi.codec.
ABIDecoder
(registry: eth_abi.registry.ABIRegistry)¶ Bases:
eth_abi.codec.BaseABICoder
Wraps a registry to provide last-mile decoding functionality.
-
decode
(types, data)¶
-
decode_abi
(types: Iterable[str], data: Union[bytes, bytearray]) → Tuple[Any, ...]¶ Decodes the binary value
data
as a sequence of values of the ABI types intypes
via the head-tail mechanism into a tuple of equivalent python values.Parameters: - types – An iterable of string representations of the ABI types that
will be used for decoding e.g.
('uint256', 'bytes[]', '(int,int)')
- data – The binary value to be decoded.
Returns: A tuple of equivalent python values for the ABI values represented in
data
.- types – An iterable of string representations of the ABI types that
will be used for decoding e.g.
-
decode_single
(typ: str, data: Union[bytes, bytearray]) → Any¶ Decodes the binary value
data
of the ABI typetyp
into its equivalent python value.Parameters: - typ – The string representation of the ABI type that will be used for
decoding e.g.
'uint256'
,'bytes[]'
,'(int,int)'
, etc. - data – The binary value to be decoded.
Returns: The equivalent python value of the ABI value represented in
data
.- typ – The string representation of the ABI type that will be used for
decoding e.g.
-
stream_class
¶ alias of
eth_abi.decoding.ContextFramesBytesIO
-
-
class
eth_abi.codec.
ABIEncoder
(registry: eth_abi.registry.ABIRegistry)¶ Bases:
eth_abi.codec.BaseABICoder
Wraps a registry to provide last-mile encoding functionality.
-
encode
(types, args)¶
-
encode_abi
(types: Iterable[str], args: Iterable[Any]) → bytes¶ Encodes the python values in
args
as a sequence of binary values of the ABI types intypes
via the head-tail mechanism.Parameters: - types – An iterable of string representations of the ABI types
that will be used for encoding e.g.
('uint256', 'bytes[]', '(int,int)')
- args – An iterable of python values to be encoded.
Returns: The head-tail encoded binary representation of the python values in
args
as values of the ABI types intypes
.- types – An iterable of string representations of the ABI types
that will be used for encoding e.g.
-
encode_single
(typ: str, arg: Any) → bytes¶ Encodes the python value
arg
as a binary value of the ABI typetyp
.Parameters: - typ – The string representation of the ABI type that will be used
for encoding e.g.
'uint256'
,'bytes[]'
,'(int,int)'
, etc. - arg – The python value to be encoded.
Returns: The binary representation of the python value
arg
as a value of the ABI typetyp
.- typ – The string representation of the ABI type that will be used
for encoding e.g.
-
is_encodable
(typ: str, arg: Any) → bool¶ Determines if the python value
arg
is encodable as a value of the ABI typetyp
.Parameters: - typ – A string representation for the ABI type against which the
python value
arg
will be checked e.g.'uint256'
,'bytes[]'
,'(int,int)'
, etc. - arg – The python value whose encodability should be checked.
Returns: True
ifarg
is encodable as a value of the ABI typetyp
. Otherwise,False
.- typ – A string representation for the ABI type against which the
python value
-
is_encodable_type
(typ: str) → bool¶ Returns
True
if values for the ABI typetyp
can be encoded by this codec.Parameters: typ – A string representation for the ABI type that will be checked for encodability e.g. 'uint256'
,'bytes[]'
,'(int,int)'
, etc.Returns: True
if values fortyp
can be encoded by this codec. Otherwise,False
.
-
-
class
eth_abi.codec.
BaseABICoder
(registry: eth_abi.registry.ABIRegistry)¶ Bases:
object
Base class for porcelain coding APIs. These are classes which wrap instances of
ABIRegistry
to provide last-mile coding functionality.
eth_abi.decoding module¶
-
class
eth_abi.decoding.
BaseDecoder
(**kwargs)¶ Bases:
eth_abi.base.BaseCoder
Base class for all decoder classes. Subclass this if you want to define a custom decoder class. Subclasses must also implement
BaseCoder.from_type_str
.-
decode
(stream: eth_abi.decoding.ContextFramesBytesIO) → Any¶ Decodes the given stream of bytes into a python value. Should raise
exceptions.DecodingError
if a python value cannot be decoded from the given byte stream.
-
eth_abi.encoding module¶
-
class
eth_abi.encoding.
BaseEncoder
(**kwargs)¶ Bases:
eth_abi.base.BaseCoder
Base class for all encoder classes. Subclass this if you want to define a custom encoder class. Subclasses must also implement
BaseCoder.from_type_str
.-
encode
(value: Any) → bytes¶ Encodes the given value as a sequence of bytes. Should raise
exceptions.EncodingError
ifvalue
cannot be encoded.
-
classmethod
invalidate_value
(value: Any, exc: Type[Exception] = <class 'eth_abi.exceptions.EncodingTypeError'>, msg: Optional[str] = None) → None¶ Throws a standard exception for when a value is not encodable by an encoder.
-
validate_value
(value: Any) → None¶ Checks whether or not the given value can be encoded by this encoder. If the given value cannot be encoded, must raise
exceptions.EncodingError
.
-
eth_abi.exceptions module¶
-
exception
eth_abi.exceptions.
ABITypeError
¶ Bases:
ValueError
Raised when a parsed ABI type has inconsistent properties; for example, when trying to parse the type string
'uint7'
(which has a bit-width that is not congruent with zero modulo eight).
-
exception
eth_abi.exceptions.
DecodingError
¶ Bases:
Exception
Base exception for any error that occurs during decoding.
-
exception
eth_abi.exceptions.
EncodingError
¶ Bases:
Exception
Base exception for any error that occurs during encoding.
-
exception
eth_abi.exceptions.
EncodingTypeError
¶ Bases:
eth_abi.exceptions.EncodingError
Raised when trying to encode a python value whose type is not supported for the output ABI type.
-
exception
eth_abi.exceptions.
IllegalValue
¶ Bases:
eth_abi.exceptions.EncodingError
Raised when trying to encode a python value with the correct type but with a value that is not considered legal for the output ABI type.
Example:
fixed128x19_encoder(Decimal('NaN')) # cannot encode NaN
-
exception
eth_abi.exceptions.
InsufficientDataBytes
¶ Bases:
eth_abi.exceptions.DecodingError
Raised when there are insufficient data to decode a value for a given ABI type.
-
exception
eth_abi.exceptions.
MultipleEntriesFound
¶ Bases:
ValueError
,eth_abi.exceptions.PredicateMappingError
Raised when multiple registrations are found for a type string in a registry’s internal mapping. This error is non-recoverable and indicates that a registry was configured incorrectly. Registrations are expected to cover completely distinct ranges of type strings.
Warning
In a future version of
eth-abi
, this error class will no longer inherit fromValueError
.
-
exception
eth_abi.exceptions.
NoEntriesFound
¶ Bases:
ValueError
,eth_abi.exceptions.PredicateMappingError
Raised when no registration is found for a type string in a registry’s internal mapping.
Warning
In a future version of
eth-abi
, this error class will no longer inherit fromValueError
.
-
exception
eth_abi.exceptions.
NonEmptyPaddingBytes
¶ Bases:
eth_abi.exceptions.DecodingError
Raised when the padding bytes of an ABI value are malformed.
-
exception
eth_abi.exceptions.
ParseError
(text, pos=-1, expr=None)¶ Bases:
parsimonious.exceptions.ParseError
Raised when an ABI type string cannot be parsed.
-
exception
eth_abi.exceptions.
PredicateMappingError
¶ Bases:
Exception
Raised when an error occurs in a registry’s internal mapping.
-
exception
eth_abi.exceptions.
ValueOutOfBounds
¶ Bases:
eth_abi.exceptions.IllegalValue
Raised when trying to encode a python value with the correct type but with a value that appears outside the range of valid values for the output ABI type.
Example:
ufixed8x1_encoder(Decimal('25.6')) # out of bounds
eth_abi.registry module¶
-
class
eth_abi.registry.
ABIRegistry
¶ -
copy
()¶ Copies a registry such that new registrations can be made or existing registrations can be unregistered without affecting any instance from which a copy was obtained. This is useful if an existing registry fulfills most of a user’s needs but requires one or two modifications. In that case, a copy of that registry can be obtained and the necessary changes made without affecting the original registry.
-
has_encoder
(type_str: str) → bool¶ Returns
True
if an encoder is found for the given type stringtype_str
. Otherwise, returnsFalse
. RaisesMultipleEntriesFound
if multiple encoders are found.
-
register
(lookup: Union[str, Callable[[str], bool]], encoder: Union[Callable[[Any], bytes], Type[eth_abi.encoding.BaseEncoder]], decoder: Union[Callable[[eth_abi.decoding.ContextFramesBytesIO], Any], Type[eth_abi.decoding.BaseDecoder]], label: str = None) → None¶ Registers the given
encoder
anddecoder
under the givenlookup
. A unique string label may be optionally provided that can be used to refer to the registration by name.Parameters: - lookup – A type string or type string matcher function
(predicate). When the registry is queried with a type string
query
to determine which encoder or decoder to use,query
will be checked against every registration in the registry. If a registration was created with a type string forlookup
, it will be considered a match iflookup == query
. If a registration was created with a matcher function forlookup
, it will be considered a match iflookup(query) is True
. If more than one registration is found to be a match, then an exception is raised. - encoder – An encoder callable or class to use if
lookup
matches a query. Ifencoder
is a callable, it must accept a python value and return abytes
value. Ifencoder
is a class, it must be a valid subclass ofencoding.BaseEncoder
and must also implement thefrom_type_str
method onbase.BaseCoder
. - decoder – A decoder callable or class to use if
lookup
matches a query. Ifdecoder
is a callable, it must accept a stream-like object of bytes and return a python value. Ifdecoder
is a class, it must be a valid subclass ofdecoding.BaseDecoder
and must also implement thefrom_type_str
method onbase.BaseCoder
. - label – An optional label that can be used to refer to this
registration by name. This label can be used to unregister an
entry in the registry via the
unregister
method and its variants.
- lookup – A type string or type string matcher function
(predicate). When the registry is queried with a type string
-
register_decoder
(lookup: Union[str, Callable[[str], bool]], decoder: Union[Callable[[eth_abi.decoding.ContextFramesBytesIO], Any], Type[eth_abi.decoding.BaseDecoder]], label: str = None) → None¶ Registers the given
decoder
under the givenlookup
. A unique string label may be optionally provided that can be used to refer to the registration by name. For more information about arguments, refer toregister
.
-
register_encoder
(lookup: Union[str, Callable[[str], bool]], encoder: Union[Callable[[Any], bytes], Type[eth_abi.encoding.BaseEncoder]], label: str = None) → None¶ Registers the given
encoder
under the givenlookup
. A unique string label may be optionally provided that can be used to refer to the registration by name. For more information about arguments, refer toregister
.
-
unregister
(label: str) → None¶ Unregisters the entries in the encoder and decoder registries which have the label
label
.
-
unregister_decoder
(lookup_or_label: Union[str, Callable[[str], bool]]) → None¶ Unregisters a decoder in the registry with the given lookup or label. If
lookup_or_label
is a string, the decoder with the labellookup_or_label
will be unregistered. If it is an function, the decoder with the lookup functionlookup_or_label
will be unregistered.
-
unregister_encoder
(lookup_or_label: Union[str, Callable[[str], bool]]) → None¶ Unregisters an encoder in the registry with the given lookup or label. If
lookup_or_label
is a string, the encoder with the labellookup_or_label
will be unregistered. If it is an function, the encoder with the lookup functionlookup_or_label
will be unregistered.
-
eth_abi.grammar module¶
-
class
eth_abi.grammar.
ABIType
(arrlist=None, node=None)¶ Base class for results of type string parsing operations.
-
arrlist
¶ The list of array dimensions for a parsed type. Equal to
None
if type string has no array dimensions.
-
is_array
¶ Equal to
True
if a type is an array type (i.e. if it has an array dimension list). Otherwise, equal toFalse
.
-
is_dynamic
¶ Equal to
True
if a type has a dynamically sized encoding. Otherwise, equal toFalse
.
-
item_type
¶ If this type is an array type, equal to an appropriate
ABIType
instance for the array’s items.
-
node
¶ The parsimonious
Node
instance associated with this parsed type. Used to generate error messages for invalid types.
-
to_type_str
()¶ Returns the string representation of an ABI type. This will be equal to the type string from which it was created.
-
validate
()¶ Validates the properties of an ABI type against the solidity ABI spec:
https://solidity.readthedocs.io/en/develop/abi-spec.html
Raises
ABITypeError
if validation fails.
-
-
class
eth_abi.grammar.
TupleType
(components, arrlist=None, *, node=None)¶ Represents the result of parsing a tuple type string e.g. “(int,bool)”.
-
is_dynamic
¶ Equal to
True
if a type has a dynamically sized encoding. Otherwise, equal toFalse
.
-
item_type
¶ If this type is an array type, equal to an appropriate
ABIType
instance for the array’s items.
-
to_type_str
()¶ Returns the string representation of an ABI type. This will be equal to the type string from which it was created.
-
validate
()¶ Validates the properties of an ABI type against the solidity ABI spec:
https://solidity.readthedocs.io/en/develop/abi-spec.html
Raises
ABITypeError
if validation fails.
-
-
class
eth_abi.grammar.
BasicType
(base, sub=None, arrlist=None, *, node=None)¶ Represents the result of parsing a basic type string e.g. “uint”, “address”, “ufixed128x19[][2]”.
-
base
¶ The base of a basic type e.g. “uint” for “uint256” etc.
-
is_dynamic
¶ Equal to
True
if a type has a dynamically sized encoding. Otherwise, equal toFalse
.
-
item_type
¶ If this type is an array type, equal to an appropriate
ABIType
instance for the array’s items.
-
sub
¶ The sub type of a basic type e.g.
256
for “uint256” or(128, 18)
for “ufixed128x18” etc. Equal toNone
if type string has no sub type.
-
to_type_str
()¶ Returns the string representation of an ABI type. This will be equal to the type string from which it was created.
-
validate
()¶ Validates the properties of an ABI type against the solidity ABI spec:
https://solidity.readthedocs.io/en/develop/abi-spec.html
Raises
ABITypeError
if validation fails.
-
-
eth_abi.grammar.
normalize
(type_str)¶ Normalizes a type string into its canonical version e.g. the type string ‘int’ becomes ‘int256’, etc.
Parameters: type_str – The type string to be normalized. Returns: The canonical version of the input type string.
-
eth_abi.grammar.
parse
(type_str)¶ Parses a type string into an appropriate instance of
ABIType
. If a type string cannot be parsed, throwsParseError
.Parameters: type_str – The type string to be parsed. Returns: An instance of ABIType
containing information about the parsed type string.
eth_abi.tools module¶
Release Notes¶
eth-abi v2.2.0 (2022-07-20)¶
eth-abi v2.1.1 (2020-02-27)¶
v2.1.0¶
- Added support for “byte” alias for “bytes1” type.
- Added support for custom stream class in
ABIDecoder
. See Using a Custom Stream Class.
v2.0.0¶
- Includes all changes from v2.0.0 beta and alpha versions.
v2.0.0-beta.9¶
- Added
eth_abi.tools
submodule with extra requirements installable withpip install eth-abi[tools]
. See Tools.
v2.0.0-beta.8¶
- Added
has_encoder()
andis_encodable_type()
to facilitate checking for type validity against coder registrations.
v2.0.0-beta.7¶
Released March 24, 2019
- Fixed an issue that caused custom types containing capital letters to be unparseable.
- Removed PyPy support.
- Added Python 3.7 support.
v2.0.0-beta.6¶
- Added the grammar module to the public API. See Grammar.
- Updated string API for the
ABIType
. Type strings forABIType
instances are now obtained via theto_type_str()
method instead of by invoking the builtin Pythonstr
function with an instance ofABIType
.
v2.0.0-beta.5¶
- Added registry copying functionality to facilitate modification of the default registry. See Copying an Existing Registry.
v2.0.0-beta.4¶
- Update eth-typing requirement to
>=2.0.0,<3.0.0
.
v2.0.0-beta.2¶
Released October 16, 2018
- Bugfixes
- Was accidentally allowing eth-typing v2. Now it requires eth-typing v1 only.
v2.0.0-beta.1¶
- New Features
- Added support for nested dynamic arrays from the Solidity version 2 ABI
- Added support for non-standard packed mode encoding
- Added support for tuple array types e.g.
(int,int)[]
- Backwards Incompatible Changes
- The
encode_single()
anddecode_single()
functions no longer accept type tuples to identify ABI types. Only type strings are accepted. - The
collapse_type()
function has been removed. People who still wish to use this function should replicate its logic locally and where needed. - The
process_type()
function has been removed in favor of theparse()
function. This should make the parsing API more consistent with the new parsimonious parser.
- The
v2.0.0-alpha.1¶
Released July 19, 2018
v1.3.0¶
Released December 6, 2018
- Bugfixes
- Resolved an issue that was preventing discovery of type hints.
- Misc
- Updated eth-typing dependency version to
>=2.0.0,<3.0.0
.
- Updated eth-typing dependency version to
v1.2.1¶
Released October 16, 2018
- Bugfixes
- Was accidentally allowing eth-typing v2. Now it requires eth-typing v1 only. (backport from v2)
v1.2.0¶
Released August 28, 2018
- New Features
- Backported and added support for nested dynamic arrays from the Solidity version 2 ABI
v1.1.1¶
Released May 10, 2018
- Bugfixes
is_encodable()
now returnsFalse
if aDecimal
has too many digits to be encoded in the givenfixed<M>x<N>
type. (It was previously raising aValueError
)- Raise an
EncodingTypeError
instead of aTypeError
when trying to encode afloat
into afixed<M>x<N>
type.
v1.1.0¶
Released May 8, 2018
- New Features
- Added a Registry API (docs in progress) for looking up encoders by ABI type
- Added support for types: tuple and fixedMxN
- Added new is_encodable check for whether a value can be encoded with the given ABI type
- Bugfixes
- Fix RealDecoder bug that allowed values other than 32 bytes
- Fix bug that accepted
stringN
as a valid ABI type. Strings may not have a fixed length. - Stricter value checking when encoding a Decimal (Make sure it’s not a NaN)
- Fix typos in “missing property” exceptions
- Misc
- Precompile regexes, for performance & clarity
- Test fixups and switch to CircleCI
- Readme improvements
- Performance improvements
- Drop Python 2 support cruft
v1.0.0¶
Released Feb 28, 2018
- Confirmed pypy3 compatibility
- Add support for eth-utils v1.0.0-beta2 and v1.0.1 stable
- Testing improvements
v0.5.0¶
- Rename to
eth-abi
for consistency across github/pypi/python-module
v0.4.4¶
- Better error messages for decoder errors.
v0.4.3¶
- Bugfix for
process_type
to support byte string type arrguments
v0.4.2¶
process_type
now auto-expands all types which have omittied their sizes.
v0.4.1¶
- Support for
function
types.
v0.3.1¶
- Bugfix for small signed integer and real encoding/decoding
v0.3.1¶
- Bugfix for faulty release.
v0.3.0¶
- Depart from the original pyethereum encoding/decoding logic.
- Fully rewritten encoder and decoder functionality.
v0.2.2¶
- Fix a handful of bytes encoding issues.
v0.2.1¶
- Use pyrlp utility functions for big_endian int operations
v0.2.0¶
- Bugfixes from upstream pyethereum repository for encoding/decoding
- Python 3 Support
v0.1.0¶
- Initial release